
Spherical Tiling by Congruent Pentagons

Min Yan

November 12, 2015

webpage for further reading:
http://www.math.ust.hk/∼mamyan/research/UROP.shtml

We consider tilings of the sphere by congruent pentagons. The basic
example is dodecahedron, which has 12 pentagonal tiles.

To simplify the problem, we assume the tiling is edge-to-edge and all
vertices have degree ≥ 3.

1 Numerical

Let v, e, f be the numbers of vertices, edges and faces in a spherical pentag-
onal tiling. Then we have

v − e+ f = 2, 5f = 2e.

Let vi be the number of vertices of degree i. Then

v = v3 + v4 + v5 + v6 + · · · , 2e = 3v3 + 4v4 + 5v5 + 6v6 + · · · .

It then easily follows that

v3 = 20 + 2v4 + 5v5 + 8v6 + · · · , f

2
− 6 = v4 + 2v5 + 3v6 + · · · .

Exercise 1. Derive similar equalities for tiling of the sphere by quadrilaterals.
What about triangles?

We conclude that f must be an even number ≥ 12. Moreover, vast
majority of vertices have degree 3. We call vertices of degree ≥ 4 high degree
vertices.
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Theorem 1. A tiling cannot have only one high degree vertices. If the tiling
has exactly two high degree vertices, then the tiling is one of five families of
earth map tilings.

The theorem [6] does not make use of edge lengths and angles, and con-
cerns only with the topological structure of the tiling.

Exercise 2. Show that the following are equivalent for a pentagonal spherical tiling.

1. The number of tiles is f = 12.

2. The number of vertices is v = 20.

3. All vertices have degree 3.

4. The tiling is the dodecahedron.

Theorem 2. In any pentagonal tiling, there must be one tile with four ver-
tices having degree 3, and the fifth vertex having degree 3, 4 or 5.

The theorem [2, Proposition 1] provides a starting point finding all the
tilings of the sphere by congruent pentagons. The idea is that a piece of the
tiling is given by a special tile in the theorem, with 5, 6 or 7 more tiles around
it. These tiles form three possible neighborhood tilings. We may first to put
edge lengths and angles to such neighborhoods, and then try to tile beyond
the neighborhoods.

Figure 1: Three neighborhood tilings.

Exercise 3. If there is no special tile as described in Theorem 2, then every tile
must be one of the following two types

1. It has at least one vertex of degree ≥ 6.
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2. It has two vertices of degree 4 or 5.

Using the fact that a degree k vertex is shared by k tiles, prove the the theorem.

Exercise 4. Show that there is no similar theorem for quadrilaterals.

Problem 1. Finding all tilings with few (say 3) high degree vertices. The
next case is 3 high degree vertices of distance 3 from each other.

Problem 2. Finding all tilings such that high degree vertices are “evenly
distributed”. For example, each tile has exactly one high degree vertex. I
have a construction for such tilings, and I believe my construction gives all
such tilings.

Problem 3. Similar study for quadrilateral tilings.

2 Neighborhood Tiling and Beyond

As suggested by Theorem 2, we may consider putting edges and angles into
three possible neighborhood tilings, such that all pentagons are congruent.

We will concentrate on the first type, in which a center tile has all vertices
having degree 3. The neighborhood of the tile consists of 6 pentagons. We
first ignore the angles and try to achieve egde congruence.

Proposition 3. If a spherical tiling by (edge) congruent pentagons has a tile
with all vertices having degree 3, then the edges of the pentagon must be one
of the five kinds: a5, a4b, a3b2, a3bc, a2b2c.

a5 a4b a3b2 a3bc a2b2c

Figure 2: Five possible edge combos for the first neighborhood in Figure 1.

Exercise 5. Use Theorem 2 to prove that it is impossible for the pentagon in a
spherical tiling by congruent pentagons to have all five edges having distinct edge
lengths.
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For the minimal case of f = 12 (i.e., dodecahedron), it is possible to
further find all the edge congruent tilings of the sphere. The numbers of
edge congruent tilings of the dodecahedron sphere are 1, 5, 1, 0, 1 for the
five cases [3, Propositions 9, 10, 11, 12].

Independent of edge lengths, it is also possible to further find all the an-
gle congruent tilings of the sphere for f = 12. Specifically, we first find all
the possible angle combinations at vertices, which we call anglewise vertex
combination, or AVC for short. There are five such possible AVCs [3, Propo-
sitions 17]. Then for each AVC, we may further find edge congruent tilings
of the sphere [3, Propositions 18, 19, 20].

The results on edge and angle congruent tilings can then be combined
together and gives the complete classification of dodecahedron tilings.

Theorem 4. There is exactly one family of tilings of the sphere by 12 con-
gruent pentagons.

Problem 4. For the second AVC (for f = 12), there are many possible
angle congruent tilings. Some examples are given in [3]. Can you find all the
possible angle congruent tilings?

Problem 5. The family of dodecahedron tilings allows two free parameters.
Find the exact range of the free parameters.

From now on, we may assume f > 12, which really means that f is an
even number ≥ 16. It turns out that the tilings of the first neighborhood in
Figure 1 with the edge combinations a3bc and a2b2c leads to f = 12. So the
cases can be dismissed.

For the edge combination a3b2, there are four possible tilings of the neigh-
borhood [2, Proposition 2]. Moreover, we have a very good idea about the
possible AVCs. The AVC helps us to further construct the tiling beyond the
neighborhood. It turns out all four neighborhood tilings lead to contradic-
tion.

Theorem 5. If a spherical tiling by more than 12 geometrically congruent
pentagons has edge length combination a2b2c, a3bc, or a3b2, with a, b, c dis-
tinct, then every tile has at least one vertex of degree > 3.

Exercise 6. Show that the neighborhood tiling with edge length a2b2c must be
given by Figure 2. Then fill in the angles to get all pentagons to become congruent.
Finally, use the angle sum equation for the pentagon (4π is the area of the sphere)∑

(five angles in pentagon)− 3π = Area(pentagon) =
4π

f
. (2.1)

4



to prove f = 12.

Figure 3: Edge congruent neighborhood tilings for a2b2c.

Problem 6. The discussion so far assumes that the whole tiling contains
a part like the first neighborhood in Figure 1. We still need to consider
the other two neighborhoods. What are the edge congruent tilings of the
other two neighborhoods? For each such edge congruent tilings, how can you
further fill in the angles so that all pentagons are congruent?

3 Equilateral Pentagonal Tiling

The technique of the last section relies heavily on the variations in the edge
length. For the other extreme that all edges have equal length (i.e., equi-
lateral pentagons), the technique is useless, and completely new strategy is
needed.

Note that general pentagons allow 7 free parameters. The equilateral con-
dition introduces 4 equalities among these parameters. Therefore equilateral
pentagons allow 7− 4 = 3 free parameters. This means that, if we can find
another 3 independent equalities among the parameters, then the equilateral
pentagon is completely determined. For a specific pentagon, it is then quite
easy to construct the tiling (or more likely, to show the pentagon cannot tile
the sphere).

The 3 equalities can be found by the fact that the sum of all angles at a
vertex must be 2π. The following gives all the possible AVCs [1, Lemma 1].

Proposition 6. If an edge-to-edge tiling of a surface has at most five distinct
angles at degree 3 vertices, then after suitable relabeling of the distinct angles,
the anglewise vertex combination at degree 3 vertices is in Table 1.
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Figure 4: Number of freedoms in a pentagon.

The necessary combinations in the table must appear, and the optional
ones may or may not appear. Further counting (i.e., “statistical”) argument
and geometrical reason show that most of the optional ones must also appear
[1, Lemmas 4-7]. In fact, with the only exception of {αβγ, δε2}, all the
AVCs gives three equalities among the five angles. Then a massive numerical
calculation of the spherical pentagons can be carried out. Many pentagons
are dismissed from tiling due to two reasons

1. Violation of geometric constraint [1, Lemma 7].

2. The number f of tiles as calculated by (2.1) is not an even number
≥ 16.

At the end, we get the following.

Theorem 7. There are exactly 8 tilings of the sphere by equilateral pen-
tagons.

4 Almost Equilateral Pentagonal Tiling

The technique discussed so far should be sufficient for the case of enough
variation in edge length and the case of all edges having the same length
(although much remains to be done). The most difficult case is the edge
length combination a4b. There is barely enough variation in edge length,
and yet there is one more freedom so that the pentagon cannot be completely
determined by numerical calculation. Some progress has been made in the
simplest case of the neighborhood in Figure 1, and there are at most three
distinct angles in the pentagon.
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Necessary Optional

α3

αβ2

αβγ α3

αβ2 α2γ
γ3

αβγ

αδ2
β2δ
β3

α2δ
βδ2

β3

δ3

αβ2 γδ2 α2δ
α2γ, δ3

αβγ αδε

βδ2, β2ε
βδ2, γε2, α3

βδ2, γ2ε
βδ2, γ3

βδ2, ε3

Necessary Optional

αβγ

αδ2

α2ε
βε2

β2δ
β3

βε2
α2ε
γ2δ
γ3

β2ε
γε2

γ2δ
γ3

δε2
β2ε
β3

ε3 β2δ

α2δ

β2ε
αε2

γδ2

γ3

δ2ε
β2ε
β3

ε3 βδ2

δε2 α3

αβ2, γδ2
α2ε

βγ2

δε2

ε3 α2δ

Table 1: Anglewise vertex combinations at degree 3 vertices.
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